ная, тонкая и хорошо соединенная с основой оксидная пленка. В этих случаях биотолерантные свойства имплантатов будут наилучшими. В зависимости от особенностей окружающей среды оксидная пленка, оптимальная толщина которой 4 Нм, может истончаться, трескатся утолщаться или отслаиваться и терять защитные свойства.
Для пассивации рекомендуются следующие традиционные методики: обработка в течение 30 мин в 20-30% азотной кислоте при температуре 50 — 60 °С и последующая оксидация в течение 150 ч в изотоническом растворе хлорида натрия при температуре 38,6 °С. Механическая обработка имплантатов после пассивации допустима.
На хорошую пассивацию указывала повышенная химическая стойкость металла и смещение электропотенциала в положительную сторону. Среди других пассиваторов надо упомянуть нитраты натрия, бихромат , кислород и анодную поляризацию. Пассивность металлов и сплавов при изменении внешних условий может перейти в активное состояние. К депассиваторам относятся сульфат натрия, тиосульфат натрия, вода, а также активные ионы водорода, хлора, брома, йода. Катодная поляризация — наиболее вероятный случай механического нарушения пассивной пленки.
Из физических способов пассивации заслуживает внимания использование ультразвука. Ультразвуковая пассивация — это многофакторный способ обработки поверхности, качество которой зависит от изменения окислительно-восстановительного потенциала, возбуждения электронных оболочек атомов, локального повышения температуры, давления, рН и кавитационного действия, которое может вызвать эрозию оксидных пленок и наоборот, с ростом частоты колебаний стойкость оксидных пленок возрастает). Хорошие результаты получают в тех случаях, когда для пассивации используют ультразвук совмещенного частотного диапазона (22 МГц). В шведской фирме «Nobelpharma», выпускающей ЭИ из титана, на окончательной стадии их обработки применяется ультразвук.
Более подробно необходимо остановиться на пассивации в тлеющем разряде. Тлеющий разряд, или ионное травление, имеет применение в разных областях исследований, в частности в технике для очистки деталей перед покрытием, когда требуется особая чистота.
поверхности. Способ тлеющего разряда заключается в том,что, бомбардируя ионами поверхность объекта, обращают преимущественно атомы с нарушенными или ослабленными связями. При травлении в зависимости от времени и режима различают несколько стадий: очистки поверхности, выявления границ зерен кристаллов, формирования углублений внутри зерен и оплавления поверхности. Чрезмерное увеличение энергии ионов нецелесообразно, так как они взаимодействуют с атомами в глубине вещества, наступают объемная диффузия и миграция выбитых атомов.
В зависимости от типа источника высокого напряжения может быть катодный тлеющий разряд, может быть высокочастотным и низкочастотным. Обычно для травления применяются инертные газы, водород, кислород, воздух. В стоматологической имплантологии проводить пассивацию имплантатов в тлеющем разряде (ПИТР) предлагал R. Baier (1970) с целью повышения энергии поверхности имплантатов и достижения ее идеальной очистки. J. Doundoulakis (1988) на основании сравнительных исследований пяти методов стерилизации титановых имплантатов сделал вывод, что после ПИТР получается поверхность, способствующая адгезии клеток и фиксации имплантатов. По данным S. Winkler и Wongthai (1986), используя тлеющий разряд для подготовки металлического каркаса перед покрытием керамикой, можно избежать отколов при изгибе металлической основы. J. Dorfman (1936) отмечает перспективность ПИТР и рекомендует ее широкое применение. для внедрения нового метода стерилизации в клиническую практику сконструирована установка «Picotron» (США). Согласно рекламному проспекту, имеется возможность пассировать и стерилизовать металлические имплантаты, а также инструменты и имплантаты с покрытием трикальцийфосфат-керамикой.