НАПРАВЛЕНИЯ РАЗРАБОТКИ КОМПОЗИТОВ

НАПРАВЛЕНИЯ РАЗРАБОТКИ КОМПОЗИТОВ

Беглое рассмотрение изменений в композитах в течение последних двадцати лет указывает на два важных направления в их разработке, а именно:.
♦ новые полимерные технологии;.
♦ новые технологии в применении наполнителей.
Новые полимерные технологии.
Способы полимеризации.
Процесс, с помощью которого паста композита превращается в твердый материал, является процессом полимеризации мономерной матрицы полимера.
В ранних поколениях композитов этот процесс был обеспечен выпуском материала в виде двух паст, смешивание которых давало необходимые для полимеризации ингредиенты. В одной пасте должен был содержаться активатор, такой как третичный амин , а в другой — инициатор, обычно пероксид бензоила (см. раздел 1.6., в котором подробнее представлена эта система отверждения).
В начале 70-х годов появились композиты, активируемые ультрафиолетовым (УФ) светом. В этих материалах УФ свет использовался для создания свободных радикалов, необходимых для запуска процесса полимеризации. Энергии УФ света было достаточно для разрушения центральной связи метилового эфира бензоина и создания двух первичных радикалов. Таким образом, достаточно было иметь только одну пасту, которая не отверждается до тех пор, пока ее не подвергнут действию УФ света. Однако было выявлено несколько серьезных недостатков при использовании отверждаемых УФ светом систем. УФ свет мог вызывать ожоги мягких тканей и вреден для зрения. Поэтому нужна была защита, и требовалось осторожное обращение при работе с аппаратами для УФ отверждения. Источником УФ света является дорогая ртутная разрядная лампа, при ее старении выход световой энергии постепенно снижается, а глубина отверждения ограничена из-за высокой степени поглощения света при прохождении через композит.
Тем не менее, идея иметь лишь одну пасту, которая может отверждаться когда это необходимо, была хорошо воспринята стоматологами и открыла путь для внедрения композитов, активируемых видимым светом (ВСА), в которых источником свободных радикалов стал камфорохинон. Энергия возбуждения у него ниже, чем у метилового эфира бензоина, поэтому свет в голубой части спектра с длиной волны -460-480 нм оказался очень эффективен. Применение такого света для отверждения имеет преимущество в использовании более дешевого источника света с кварцевой галогеновой лампой, которая оказывает не такое вредное воздействие как УФ облучение. Видимый свет лучше проникает через композит, обеспечивая большую глубину отверждения. В аппаратах используют специальные фильтры для отсечения УФ и инфракрасного участков спектра света на выходе, что позволяет избежать ожога мягких тканей и избыточного подъема температуры на облучаемой поверхности.
Рис. 2.2.4. СЭМ участка с недостаточной связью (показано стрелками) между полимерной матрицей и стеклянным наполнителем
Методы отверждения суммированы в Таблице 2.2.2.
Рис. 2.2.5. Схематическое представление молекул мономера (МА), отталкиваемых поверхностью стекла из-за присутствия на ней гидроксильных групп (ОН)
Рис. 2.2.7. Нанесение и конденсация силана на поверхности кварцевого стекла
Безопасность.
Беспокойства по поводу недостаточной безопасности использования высокоинтенсивного ультрафиолетового света удалось избежать при внедрении новых ВСА систем. Использование термина «видимый свет» вселяет чувство безопасности, так как это тот самый свет, воздействию которого мы подвергаемся постоянно. Тем не менее, рекомендуется избегать прямого воздействия света от аппаратов светового отверждения, которые излучают видимый свет весьма высокой интенсивности, так как голубой участок его спектра может вызвать повреждение глаз. Высокоинтенсивный свет сам по себе может оказать вредное действие на сетчатую оболочку глаза, имеется также потенциальная опасность повредить сетчатку из-за «вредного воздействия синего света». Однако на сегодня еще мало известно об этом свете и о том, насколько серьезной эта проблема может стать в будущем. Самое лучшее — это защищать глаза, что позволяет легко устранить возможное вредное воздействие отверждающего света.
Рис. 2.2.6. Схематическое представление силанового аппрета, обеспечивающего связь между метакрилатным полимером и гидроксилированной поверхностью стекла