Эти явления наблюдаются у полимеров с высокой молекулярной массой.
Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:.
Напряжение сдвига = r
s
= F/A Скорость сдвига = е = V/d.
Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле:.
Т| = напряжение сдвига/скорость сдвига.
Единицами измерения вязкости являются Паскаль секунды (Пах).
Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские» свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.
Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости
Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей
Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.
У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.
Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости
Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей
Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.